Shipboard Pipe Flushing Acid Waste

19 May 2004

FY04 Y0817 Program Review

Technical POC

NFESC, Code 421

Phone: 805 982-1670

Management POC

NFESC, Code 45

Phone: (805) 982-1674

Objectives

•To develop an integrated pierside system for recycle/reuse and treatment of acid/heavy metal wastewater generated from shipboard seawater heat exchanger pipe flushing operations

DoD EQ Requirements

- •Navy's Environmental Quality (EQ) Requirements:
 - —# 2.II.01.q, "Control/Treat industrial wastewater discharges."
 - —# 3.I.13.a, "Reuse/recycle of Hazardous/Polluting Materials"

•EQ Requirement Priority: High

Problem Statement/Regulatory Drivers

- •Each chemical flushing process for shipboard heat exchangers generates up to 15,000 gallons of hazardous waste (hydrochloric acid, heavy metals, and toxic)
- Contractors disposal cost ranges from \$2 to \$12 per gallon and the Navy is still liable for spills, accidents or mis-handling
- •Chemical flushing process is more effective than the mechanical process. However, the large volume, high disposal cost and hazardous nature of the waste generated have discouraged other potential users

Approach

- Visit operation sites and gather wastewater samples for pollutants characterization
- Develop process performance and design parameters for recycle, reuse, and treatment to meet the discharge limits
- Initial COTS technology alternative evaluation
- Design and fabricate a selected prototype system
- Conduct a Dem/Val at a selected shipyard
- Deliver a proven operation system to the end user

Prepare an implementation document, UDP

Technology Description

•A portable integrated pierside system to recycle and reuse the chemical solution and to treat the waste to meet the dischargeable limits

6/3/2004

Conceptual Integrated Pierside System

Before/After Comparison

Before After

Waste Disposal Cost High Low

Hazardous Waste Yes No

Navy-wide Usage Low High

Expected DoD Benefits

(Environmental/Economic Benefits)

- •75% reduction of fresh water and chemical cost
- •\$1M annual savings at each shipyard from disposal of shipboard pipe flushing HW
- •Reduce liability for chemical spills, accidents or mis-handling en route to the vendor's processing facility

Milestones

Milestones

Completion Date

1.	Visit operation sites and waste	
	characteristics evaluation	Jun/04
2.	Develop process performance and	
	design parameters	Aug/04
3.	COTS technology alternative evaluation	Dec/04
4.	Design and fabricate a prototype system	Apr/05
5 .	Conduct A Dem/Val at a selected shipyard	Oct/05
6.	Deliver a proven system to the end user	Mar/06
7.	Prepare User Data Package (UDP)	Apr/06

Shipboard Pipe Flushing Acid Waste

	2004			2005				2006					
ID	Task Name	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Visit operation sites and waste characterization												
2	Develop process performance and design parameters												
3	COTS technology alternative evaluation												
4	Design and fabricate a prototype system												
5	Conduct a Dem/Val at a selected shipyard												
6	Deliver a proven system to the end-users												
7	Prepare User Data Package (UDP)												

6/3/2004

Project Coordination

- NSY Puget Sound Code 260.3, Mr. Paul Stirling
- •NSWC Code 632, Mr. Tom Judy
- NAVSEA 05M32, Mr. Fred Tsao
- NAVSEA 07T, Mr. Dave Cartwright
- •NAVSSES, NSWCCD, Mr. Frank Reyes, Code 9234

Technical Accomplishments to Date

- Obtained historical wastewater lab test data
- Visited two operation sites and collected wastewater samples for lab analytical tests
- •Established collaborative effort with NSWCCD

Test Results for Pipe Flushing Wastewater

Pollutants	Puget Sound	Norfolk	Point Loma	Loma Pearl Efflu Harbor Lim		
Copper (mg/l)	1460	230/230	1910/1870	1640	3.31	
Nickel (mg/l)	485	140/140	670/410	686	3.89	
Zinc (mg/l)	140	79	150	167	2.55	
Chromium (mg/l)	3	0.3	2.2	2.8	2.71	
COD (mg/l)	N/A	11,000	15,000	N/A	TBD	
BOD (mg/l)	N/A	1,640	1,730	N/A	TBD	

Implementation Strategy Accomplishments and Plans

- •Disseminate Tech Transfer documents, UDP to potential end-users
- Identified potential users:
 - -Puget Sound Naval Shipyard
 - -SUBASE Point Loma, San Diego
 - -North Island, Navy Station, San Diego
 - -Norfolk Naval Shipyard
 - -Pearl Harbor Naval Shipyard
 - -Portsmouth Naval Shipyard
 - –Mayport Naval Station

Logic Model for Shipboard Pipe Flushing Acid Waste

Navy Benefits	A Navy-wide annual savings of \$5M in disposal costs
Customer Capability	To recycle and reuse the chemical cleaning solution prior to the treatment and disposal
Product	An integrated pierside recycle/reuse/treatment system
Project Milestones	MS#5: Conduct Dem/Val (Q1, FY06) MS#6: Deliver a proven operational system to the end user (Q2, FY06)

6/3/2004

Shipboard Pipe Flushing Acid Wastewater

- Develop a pierside system to recycle/reuse/treat chemical flushing solution
- Reduce hazardous wastewater generation & disposal cost
- Reduce Navy's liability for any spills and accidents
- Estimated annual savings of \$1M for each shipyard

• ROI = 10